Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
نویسندگان
چکیده
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification. An Unscented Kalman Filter (UKF) algorithm with an exponential time-varying forgetting factor has been presented to enable the neural network model to track any time-varying process dynamic changes. An adaptive NMPC has been designed based on the sequential quadratic programming technique. The paper makes use of a dynamic linearization approach to extract a linear model at each sampling time instant so as to develop an adaptive LMPC. The servo and regulating performances of the proposed adaptive control schemes have been illustrated on a non-linear Continuous Stirred Tank Reactor (CSTR) as a benchmark problem. The simulation results demonstrate the capability of the proposed identification strategy to effectively identify compact, accurate and transparent model for the CSTR process. It is shown that the proposed adaptive NMPC controller presents better improvement with faster response time for both servo and regulatory control objectives in comparison with the proposed adaptive LMPC, an adaptive generalized predictive controller based on Recursive Least Squares (RLS) algorithm and well-tuned PID controllers.
منابع مشابه
Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملPruning of RBF Networks in Robot Manipulator Learning Control
Radial Basis Function Neural Networks are well suited for learning the system dynamics of a robot manipulator and implementation of these networks in the control scheme for a manipulator is a good way to deal with the system uncertainties and modeling errors which often occur. The problem with RBF networks however is to find a network with suitable size, not too computational demanding and able...
متن کاملPosition Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison
In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملHybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کامل